Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Environ Res ; : 118956, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640990

RESUMO

Environmental chemical exposures influence immune system functions, and humans are exposed to a wide range of chemicals, termed the chemical "exposome". A comprehensive, discovery analysis of the associations of multiple chemical families with immune biomarkers is needed. In this study, we tested the associations between environmental chemical concentrations and immune biomarkers. We analyzed the United States cross-sectional National Health and Nutrition Examination Survey (NHANES 1999-2018). Chemical biomarker concentrations were measured in blood or urine (196 chemicals, 17 chemical families). Immune biomarkers included counts of lymphocytes, neutrophils, monocytes, basophils, eosinophils, red blood cells, white blood cells, and mean corpuscular volume. We conducted separate survey-weighted, multivariable linear regressions of each log2-transformed chemicals on immune measures, adjusted for relevant covariates. We accounted for multiple comparisons using a false discovery rate (FDR). Among 45,528 adult participants, the mean age was 45.7 years, 51.4% were female, and 69.3% were Non-Hispanic White. 71 (36.2%) chemicals were associated with at least one of the eight immune biomarkers. The most chemical associations (FDR<0.05) were observed with mean corpuscular volume (36 chemicals) and red blood cell counts (35 chemicals). For example, a doubling in the concentration of cotinine was associated with 0.16 fL (95% CI: 0.15, 0.17; FDR<0.001) increased mean corpuscular volume, and a doubling in the concentration of blood lead was associated with 61,736 increased red blood cells per µL (95% CI: 54,335, 69,138; FDR<0.001). A wide variety of chemicals, such as metals and smoking-related compounds, were highly associated with immune system biomarkers. This environmental chemical-wide association study identified chemicals from multiple families for further toxicological, immunologic, and epidemiological investigation.

2.
Environ Health Perspect ; 132(4): 47002, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568856

RESUMO

BACKGROUND: There is a suite of chemicals, including metals, pesticides, and personal care product compounds, which are commonly detected at high levels in US Center for Disease Control's National Health and Nutrition Examination Survey (NHANES) chemical biomarker screens. Whether these chemicals influence development of breast cancer is not well understood. OBJECTIVES: The objectives were to perform an unbiased concentration-dependent assessment of these chemicals, to quantify differences in cancer-specific genes and pathways, to describe if these differences occur at human population-relevant concentrations, and to specifically test for differences in markers of stemness and cellular plasticity. METHODS: We treated nontumorigenic mammary epithelial cells, MCF10A, with 21 chemicals at four concentrations (25 nM, 250 nM, 2.5µM, and 25µM) for 48 h. We conducted RNA-sequencing for these 408 samples, adapting the plexWell plate-based RNA-sequencing method to analyze differences in gene expression. We calculated gene and biological pathway-specific benchmark concentrations (BMCs) using BMDExpress3, identifying differentially expressed genes and generating the best fit benchmark concentration models for each chemical across all genes. We identified enriched biological processes and pathways for each chemical and tested whether chemical exposures change predicted cell type distributions. We contextualized benchmark concentrations relative to human population biomarker concentrations in NHANES. RESULTS: We detected chemical concentration-dependent differences in gene expression for thousands of genes. Enrichment and cell type distribution analyses showed benchmark concentration responses correlated with differences in breast cancer-related pathways, including induction of basal-like characteristics for some chemicals, including arsenic, lead, copper, and methyl paraben. Comparison of benchmark data to NHANES chemical biomarker (urine or blood) concentrations indicated an overlap between exposure levels and levels sufficient to cause a gene expression response. DISCUSSION: These analyses revealed that many of these 21 chemicals resulted in differences in genes and pathways involved in breast cancer in vitro at human exposure-relevant concentrations. https://doi.org/10.1289/EHP12886.


Assuntos
Neoplasias da Mama , Perfilação da Expressão Gênica , Humanos , Feminino , Inquéritos Nutricionais , Neoplasias da Mama/induzido quimicamente , Biomarcadores , RNA
3.
Environ Sci Technol ; 58(13): 5889-5898, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501580

RESUMO

Human exposure to toxic chemicals presents a huge health burden. Key to understanding chemical toxicity is knowledge of the molecular target(s) of the chemicals. Because a comprehensive safety assessment for all chemicals is infeasible due to limited resources, a robust computational method for discovering targets of environmental exposures is a promising direction for public health research. In this study, we implemented a novel matrix completion algorithm named coupled matrix-matrix completion (CMMC) for predicting direct and indirect exposome-target interactions, which exploits the vast amount of accumulated data regarding chemical exposures and their molecular targets. Our approach achieved an AUC of 0.89 on a benchmark data set generated using data from the Comparative Toxicogenomics Database. Our case studies with bisphenol A and its analogues, PFAS, dioxins, PCBs, and VOCs show that CMMC can be used to accurately predict molecular targets of novel chemicals without any prior bioactivity knowledge. Our results demonstrate the feasibility and promise of computationally predicting environmental chemical-target interactions to efficiently prioritize chemicals in hazard identification and risk assessment.


Assuntos
Dioxinas , Bifenilos Policlorados , Humanos , Exposição Ambiental/análise , Bifenilos Policlorados/análise , Medição de Risco , Saúde Pública
4.
Cancer Res Commun ; 4(2): 328-336, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38284880

RESUMO

The debate over daylight saving time (DST) has surged, with interests in the effects of sunlight exposure on health. Prior studies simulated DST and standard time conditions by analyzing different locations within time zones and neighboring areas across time zone borders. We analyzed cancer incidence rates from various longitudinal positions within time zones and at time zone borders in the contiguous United States. Using data from State Cancer Profiles (2016-2020), we analyzed total cancer of 19 types and specific rates for eight cancers, adjusted for age and includes all demographics. log-linear regression is used to replicate a previous study, and spatial regression models are employed to explore discontinuities at borders. Cancer rate differences lack statistical significance within time zones and near borders for total cancer and most individual cancers. Exceptions included breast, prostate, and liver and bile duct cancers, which exhibited significant relationships with relative position at the 95% significance level. Breast and liver and bile duct cancers saw decreases, while prostate cancer incidence increased from west to east within time zones. Relative position does not have a significant impact on cancer incidence, hence cancer development in general. Isolated exceptions may warrant further investigation as more data become available. Our findings challenge prior research, revealing numerous inconsistencies. These disparities urge a reconsideration of the potential disparities in human health associated with DST and standard time. They offer insights contribute to the ongoing discussion surrounding the retention or abandonment of DST. SIGNIFICANCE: In this article, we investigate the relation between the epidemiology of cancer incidence in the United States and time zone-related longitudinal positions. Our results differ from previous research, which were based on a subset of our data, and show that the time zone effect on cancer incidence rate is not significant. Our research provides implications on the implementation of DST by suggesting that there is no cancer-risk associated reason to prefer one time over the other. Our study also uses regression discontinuity design using natural splines, a more advanced statistical method, to increase robustness of our result. Our findings challenge prior research, revealing numerous inconsistencies. These disparities urge a reconsideration of the potential disparities in human health associated with DST and standard time. They offer insights contribute to the ongoing discussion surrounding the retention or abandonment of DST.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias da Próstata , Masculino , Humanos , Estados Unidos/epidemiologia , Neoplasias da Próstata/epidemiologia , Estudos Longitudinais , Tempo , Incidência
5.
Cancers (Basel) ; 15(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958428

RESUMO

Obesity is not only a risk factor for multiple myeloma (MM) incidence, but it is also associated with an increased risk of progression from myeloma precursors-monoclonal gammopathy of undetermined significance-and smoldering myeloma. Adipocytes in the bone marrow (BMAs) microenvironment have been shown to facilitate MM cell growth via secreted factors, but the nature of these secreted factors and their mechanism of action have not been fully elucidated. The elevated expression of aryl hydrocarbon receptor (AhR) is associated with a variety of different cancers, including MM; however, the role of AhR activity in obesity-associated MM cell growth and survival has not been explored. Indeed, this is of particular interest as it has been recently shown that bone marrow adipocytes are a source of endogenous AhR ligands. Using multiple in vitro models of tumor-adipocyte crosstalk to mimic the bone microenvironment, we identified a novel, non-toxicological role of the adipocyte-secreted factors in the suppression of AhR activity in MM cells. A panel of six MM cell lines were cultured in the presence of bone marrow adipocytes in (1) a direct co-culture, (2) a transwell co-culture, or (3) an adipocyte-conditioned media to interrogate the effects of the secreted factors on MM cell AhR activity. Nuclear localization and the transcriptional activity of the AhR, as measured by CYP1A1 and CYP1B1 gene induction, were suppressed by exposure to BMA-derived factors. Additionally, decreased AhR target gene expression was associated with worse clinical outcomes. The knockdown of AhR resulted in reduced CYP1B1 expression and increased cellular growth. This tumor-suppressing role of CYP1A1 and CYP1B1 was supported by patient data which demonstrated an association between reduced target gene expression and worse overall survival. These data demonstrated a novel mechanism by which bone marrow adipocytes promote MM progression.

6.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37986898

RESUMO

Activating mutations in KRAS extensively reprogram cellular metabolism to support the continuous growth, proliferation, and survival of pancreatic tumors. Targeting these metabolic dependencies are promising approaches for the treatment of established tumors. However, metabolic reprogramming is required early during tumorigenesis to provide transformed cells selective advantage towards malignancy. Acinar cells can give rise to pancreatic tumors through acinar-to-ductal metaplasia (ADM). Dysregulation of pathways that maintain acinar homeostasis accelerate tumorigenesis. During ADM, acinar cells transdifferentiate to duct-like cells, a process driven by oncogenic KRAS. The metabolic reprogramming that is required for the transdifferentiation in ADM is unclear. We performed transcriptomic analysis on mouse acinar cells undergoing ADM and found metabolic programs are globally enhanced, consistent with the transition of a specialized cell to a less differentiated phenotype with proliferative potential. Indeed, we and others have demonstrated how inhibiting metabolic pathways necessary for ADM can prevent transdifferentiation and tumorigenesis. Here, we also find NRF2-target genes are differentially expressed during ADM. Among these, we focused on the increase in the gene coding for NADPH-producing enzyme, Glucose-6-phosphate dehydrogenase (G6PD). Using established mouse models of KrasG12D-driven pancreatic tumorigenesis and G6PD-deficiency, we find that mutant G6pd accelerates ADM and pancreatic intraepithelial neoplasia. Acceleration of cancer initiation with G6PD-deficiency is dependent on its NADPH-generating function in reactive oxygen species (ROS) management, as opposed to other outputs of the pentose phosphate pathway. Together, this work provides new insights into the function of metabolic pathways during early tumorigenesis.

7.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873115

RESUMO

Background: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. Objective: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. Methods: Female mice were exposed to human relevant doses of either Pb (32ppm) via drinking water or DEHP (5 mg/kg-day) via chow for two weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and Chipenrich were used for genomic annotations and geneset enrichment tests of DMRs, respectively. Results: The cortex contained the majority of DMRs associated with Pb (69%) and DEHP (58%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 17 and 14 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 79 and 47 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, with 15 and 17 ICR-located DMRs across cortex, blood, and liver in each gene, respectively. The ICRs were also the location of DMRs replicated across target and surrogate tissues, suggesting epigenetic changes these regions may be potentially viable biomarkers. Conclusions: We observed Pb- and DEHP-specific DNAm changes in cortex, blood, and liver, and the greatest degree of overlap in DMR signatures was seen between exposures followed by sex and tissue type. DNAm at imprinted control regions was altered by both Pb and DEHP, highlighting the susceptibility of genomic imprinting to these exposures during the perinatal window of development.

8.
J Expo Sci Environ Epidemiol ; 33(5): 687-698, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37718377

RESUMO

BACKGROUND: Some hormonally active cancers have low survival rates, but a large proportion of their incidence remains unexplained. Endocrine disrupting chemicals may affect hormone pathways in the pathology of these cancers. OBJECTIVE: To evaluate cross-sectional associations between per- and polyfluoroalkyl substances (PFAS), phenols, and parabens and self-reported previous cancer diagnoses in the National Health and Nutrition Examination Survey (NHANES). METHODS: We extracted concentrations of 7 PFAS and 12 phenols/parabens and self-reported diagnoses of melanoma and cancers of the thyroid, breast, ovary, uterus, and prostate in men and women (≥20 years). Associations between previous cancer diagnoses and an interquartile range increase in exposure biomarkers were evaluated using logistic regression models adjusted for key covariates. We conceptualized race as social construct proxy of structural social factors and examined associations in non-Hispanic Black, Mexican American, and other Hispanic participants separately compared to White participants. RESULTS: Previous melanoma in women was associated with higher PFDE (OR:2.07, 95% CI: 1.25, 3.43), PFNA (OR:1.72, 95% CI: 1.09, 2.73), PFUA (OR:1.76, 95% CI: 1.07, 2.89), BP3 (OR: 1.81, 95% CI: 1.10, 2.96), DCP25 (OR: 2.41, 95% CI: 1.22, 4.76), and DCP24 (OR: 1.85, 95% CI: 1.05, 3.26). Previous ovarian cancer was associated with higher DCP25 (OR: 2.80, 95% CI: 1.08, 7.27), BPA (OR: 1.93, 95% CI: 1.11, 3.35) and BP3 (OR: 1.76, 95% CI: 1.00, 3.09). Previous uterine cancer was associated with increased PFNA (OR: 1.55, 95% CI: 1.03, 2.34), while higher ethyl paraben was inversely associated (OR: 0.31, 95% CI: 0.12, 0.85). Various PFAS were associated with previous ovarian and uterine cancers in White women, while MPAH or BPF was associated with previous breast cancer among non-White women. IMPACT STATEMENT: Biomarkers across all exposure categories (phenols, parabens, and per- and poly- fluoroalkyl substances) were cross-sectionally associated with increased odds of previous melanoma diagnoses in women, and increased odds of previous ovarian cancer was associated with several phenols and parabens. Some associations differed by racial group, which is particularly impactful given the established racial disparities in distributions of exposure to these chemicals. This is the first epidemiological study to investigate exposure to phenols in relation to previous cancer diagnoses, and the first NHANES study to explore racial/ethnic disparities in associations between environmental phenol, paraben, and PFAS exposures and historical cancer diagnosis.


Assuntos
Neoplasias da Mama , Poluentes Ambientais , Fluorocarbonos , Melanoma , Neoplasias Ovarianas , Masculino , Humanos , Feminino , Fenóis , Parabenos/análise , Inquéritos Nutricionais , Estudos Transversais , Biomarcadores
9.
Neurotoxicol Teratol ; 99: 107286, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37442398

RESUMO

Valproic acid (VPA) is an anti-epileptic medication that increases the risk of neural tube defect (NTD) outcomes in infants exposed during gestation. Previous studies into VPA's mechanism of action have focused on alterations in gene expression and metabolism but have failed to consider how exposure changes the abundance of critical developmental proteins over time. This study evaluates the effects of VPA on protein abundance in the developmentally distinct tissues of the mouse visceral yolk sac (VYS) and embryo proper (EMB) using mouse whole embryo culture. Embryos were exposed to 600 µM VPA at 2 h intervals over 10 h during early organogenesis with the aim of identifying protein pathways relevant to VPA's mechanism of action in failed NTC. Protein abundance was measured through tandem mass tag (TMT) labeling followed by liquid chromatography and mass spectrometry. Overall, there were over 1500 proteins with altered abundance after VPA exposure in the EMB or VYS with 428 of these proteins showing previous gene expression associations with VPA exposure. Limited overlap of significant proteins between tissues supported the conclusion of independent roles for the VYS and EMB in response to VPA. Pathway analysis of proteins with increased or decreased abundance identified multiple pathways with mechanistic relevance to NTC and embryonic development including convergent extension, Wnt Signaling/planar cell polarity, cellular migration, cellular proliferation, cell death, and cytoskeletal organization processes as targets of VPA. Clustering of co-regulated proteins to identify shared patterns of protein abundance over time highlighted 4 h and 6/10 h as periods of divergent protein abundance between control and VPA-treated samples in the VYS and EMB, respectively. Overall, this study demonstrated that VPA temporally alters protein content in critical developmental pathways in the VYS and the EMB during early organogenesis in mice.


Assuntos
Defeitos do Tubo Neural , Ácido Valproico , Humanos , Gravidez , Feminino , Camundongos , Animais , Ácido Valproico/toxicidade , Proteínas/metabolismo , Embrião de Mamíferos , Defeitos do Tubo Neural/metabolismo , Organogênese
10.
Artigo em Inglês | MEDLINE | ID: mdl-37474644

RESUMO

BACKGROUND: Farmworkers in the United States, especially migrant workers, face unique barriers to healthcare and have documented disparities in health outcomes. Exposure to pesticides, especially those persistent in the environment, may contribute to these health disparities. OBJECTIVE: Quantify differences in pesticide exposure bioactivity by farmworker category and US citizenship status. METHODS: We queried the National Health and Nutrition Examination Study (NHANES) from 1999-2014 for pesticide exposure biomarker concentrations among farmworkers and non-farmworkers by citizenship status. We combined this with toxicity assay data from the US Environmental Protection Agency's (EPA's) Toxicity Forecaster (ToxCast). We estimated adverse biological effects that occur across a range of human population-relevant pesticide doses. RESULTS: In total, there were 844 people with any farmwork history and 23,592 non-farmworkers. Of 12 commonly detectable pesticide biomarkers in NHANES, 2,4-dichlorophenoxyacetic acid (OR = 3.76, p = 1.33 × 10-6) was significantly higher in farmworkers than non-farmworkers. Farmworkers were 1.15 times more likely to have a bioactive pesticide biomarker measurement in comparison to non-farmworkers (adjusted OR = 1.15, 95% CI: 0.87, 1.51). Non-U.S. citizens were 1.39 times more likely to have bioactive pesticide biomarker concentrations compared to people with U.S. citizenship (adjusted OR 1.39, 95% CI: 1.17, 1.64). Additionally, non-citizens were significantly more exposed to bioactive levels of ß-hexachlorocyclohexane (BHC) (OR = 8.10, p = 1.33 × 10-6), p,p-DDE (OR = 2.60, p = 0.02), and p,p'-DDT (OR = 7.75, p = 0.01). IMPACT STATEMENT: Farmworkers are a vulnerable population due to social determinants of health and occupational exposures. Here, we integrate US population chemical biomonitoring data and toxicity outcome data to assess pesticide exposure by farmwork history and citizenship. We find that farmworkers and those without US citizenship are significantly more likely to be exposed to concentrations of pesticides which are bioactive in toxicological assays. Thus, farmworkers employed in the US but who are not citizens could be at increased risk of harm to their health due to pesticides. These findings are important to shape evidence-based policies in regulatory science to promote worker safety.

11.
Front Cell Dev Biol ; 11: 1198148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384255

RESUMO

Introduction: The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects. Methods: To investigate the relationship between DNA hydroxymethylation and developmental exposure to common contaminants, a collaborative, NIEHS-sponsored consortium, TaRGET II, initiated longitudinal mouse studies of developmental exposure to human-relevant levels of the phthalate plasticizer di(2-ethylhexyl) phthalate (DEHP), and the metal lead (Pb). Exposures to 25 mg DEHP/kg of food (approximately 5 mg DEHP/kg body weight) or 32 ppm Pb-acetate in drinking water were administered to nulliparous adult female mice. Exposure began 2 weeks before breeding and continued throughout pregnancy and lactation, until offspring were 21 days old. At 5 months, perinatally exposed offspring blood and cortex tissue were collected, for a total of 25 male mice and 17 female mice (n = 5-7 per tissue and exposure). DNA was extracted and hydroxymethylation was measured using hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). Differential peak and pathway analysis was conducted comparing across exposure groups, tissue types, and animal sex, using an FDR cutoff of 0.15. Results: DEHP-exposed females had two genomic regions with lower hydroxymethylation in blood and no differences in cortex hydroxymethylation. For DEHP-exposed males, ten regions in blood (six higher and four lower) and 246 regions (242 higher and four lower) and four pathways in cortex were identified. Pb-exposed females had no statistically significant differences in blood or cortex hydroxymethylation compared to controls. Pb-exposed males, however, had 385 regions (all higher) and six pathways altered in cortex, but no differential hydroxymethylation was identified in blood. Discussion: Overall, perinatal exposure to human-relevant levels of two common toxicants showed differences in adult DNA hydroxymethylation that was specific to sex, exposure type, and tissue, but male cortex was most susceptible to hydroxymethylation differences by exposure. Future assessments should focus on understanding if these findings indicate potential biomarkers of exposure or are related to functional long-term health effects.

12.
Commun Biol ; 6(1): 264, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914823

RESUMO

The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.


Assuntos
Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Placenta/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Análise em Microsséries , Expressão Gênica
13.
Toxics ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36668811

RESUMO

Environmental contaminants such as the metal lead (Pb) are associated with cardiovascular disease, but the underlying molecular mechanisms are poorly understood. In particular, little is known about how exposure to Pb during early development impacts the cardiac epigenome at any point across the life course and potential differences between sexes. In a mouse model of human-relevant perinatal exposures, we utilized RNA-seq and Enhanced Reduced Representation Bisulfite Sequencing (ERRBS) to investigate the effects of Pb exposure during gestation and lactation on gene expression and DNA methylation, respectively, in the hearts of male and female mice at weaning. For ERRBS, we identified differentially methylated CpGs (DMCs) or differentially methylated 1000 bp regions (DMRs) based on a minimum absolute change in methylation of 10% and an FDR < 0.05. For gene expression data, an FDR < 0.05 was considered significant. No individual genes met the FDR cutoff for gene expression; however, we found that Pb exposure leads to significant changes in the expression of gene pathways relevant to cardiovascular development and disease. We further found that Pb promotes sex-specific changes in DNA methylation at hundreds of gene loci (280 DMCs and 99 DMRs in males, 189 DMCs and 121 DMRs in females), and pathway analysis revealed that these CpGs and regions collectively function in embryonic development. In males, differential methylation also occurred at genes related to immune function and metabolism. We then investigated whether genes exhibiting differential methylation at weaning were also differentially methylated in hearts from a cohort of Pb-exposed mice at adulthood. We found that a single gene, Galnt2, showed differential methylation in both sexes and time points. In a human cohort investigating the influence of prenatal Pb exposure on the epigenome, we also observed an inverse association between first trimester Pb concentrations and adolescent blood leukocyte DNA methylation at a locus in GALNT2, suggesting that this gene may represent a biomarker of Pb exposure across species. Together, these data, across two time points in mice and in a human birth cohort study, collectively demonstrate that Pb exposure promotes sex-specific programming of the cardiac epigenome, and provide potential mechanistic insight into how Pb causes cardiovascular disease.

14.
Adv Sci (Weinh) ; 10(10): e2207693, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36703617

RESUMO

Transferrin receptor (TFRC) is the major mediator for iron entry into a cell. Under excessive iron conditions, TFRC is expected to be reduced to lower iron uptake and toxicity. However, the mechanism whereby TFRC expression is maintained at high levels in iron-enriched cancer cells and the contribution of TFRC to cancer development are enigmatic. Here the work shows TFRC is induced by adenomatous polyposis coli (APC) gene loss-driven ß-catenin activation in colorectal cancer, whereas TFRC-mediated intratumoral iron accumulation potentiates ß-catenin signaling by directly enhancing the activity of tankyrase. Disruption of TFRC leads to a reduction of colonic iron levels and iron-dependent tankyrase activity, which caused stabilization of axis inhibition protein 2 (AXIN2) and subsequent repression of the ß-catenin/c-Myc/E2F Transcription Factor 1/DNA polymerase delta1 (POLD1) axis. POLD1 knockdown, iron chelation, and TFRC disruption increase DNA replication stress, DNA damage response, apoptosis, and reduce colon tumor growth. Importantly, a combination of iron chelators and DNA damaging agents increases DNA damage response and reduces colon tumor cell growth. TFRC-mediated iron import is at the center of a novel feed-forward loop that facilitates colonic epithelial cell survival. This discovery may provide novel strategies for colorectal cancer therapy.


Assuntos
Neoplasias do Colo , Tanquirases , Humanos , beta Catenina/metabolismo , Ferro/metabolismo , Tanquirases/metabolismo , Neoplasias do Colo/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
15.
Toxicology ; 483: 153371, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396003

RESUMO

Numerous Superfund sites are contaminated with the volatile organic chemical trichloroethylene (TCE). In women, exposure to TCE in pregnancy is associated with reduced birth weight. Our previous study reported that TCE exposure in pregnant rats decreased fetal weight and elevated oxidative stress biomarkers in placentae, suggesting placental injury as a potential mechanism of TCE-induced adverse birth outcomes. In this study, we investigated if co-exposure with the antioxidant N-acetylcysteine (NAC) attenuates TCE exposure effects on RNA expression. Timed-pregnant Wistar rats were exposed orally to 480 mg TCE/kg/day on gestation days 6-16. Exposure of 200 mg NAC/kg/day alone or as a pre/co-exposure with TCE occurred on gestation days 5-16 to stimulate antioxidant genes prior to TCE exposure. Tissue was collected on gestation day 16. In male and female placentae, we evaluated TCE- and/or NAC-induced changes to gene expression and pathway enrichment analyses using false discovery rate (FDR) and fold-change criteria. In female placentae, exposure to TCE caused significant differential expression 129 genes while the TCE+NAC altered 125 genes, compared with controls (FDR< 0.05 + fold-change >1). In contrast, in male placentae TCE exposure differentially expressed 9 genes and TCE+NAC differentially expressed 35 genes, compared with controls (FDR< 0.05 + fold-change >1). NAC alone did not significantly alter gene expression in either sex. Differentially expressed genes observed with TCE exposure were enriched in mitochondrial biogenesis and oxidative phosphorylation pathways in females whereas immune system pathways and endoplasmic reticulum stress pathways were differentially expressed in both sexes (FDR<0.05). TCE treatment was differentially enriched for genes regulated by the transcription factors ATF6 (both sexes) and ATF4 (males only), indicating a cellular condition triggered by misfolded proteins during endoplasmic reticulum stress. This study demonstrates novel genes and pathways involved in TCE-induced placental injury and showed antioxidant co-treatment largely did not attenuate TCE exposure effects.


Assuntos
Tricloroetileno , Feminino , Masculino , Ratos , Gravidez , Animais , Tricloroetileno/toxicidade , Tricloroetileno/metabolismo , Acetilcisteína/farmacologia , Ratos Wistar , Antioxidantes/farmacologia , Placenta/metabolismo
16.
J Virol ; 96(22): e0085522, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36342297

RESUMO

Human norovirus (HNoV) accounts for one-fifth of all acute viral gastroenteritis worldwide and an economic burden of ~$60 billion globally. The lack of treatment options against HNoV is in part due to the lack of cultivation systems. Recently, a model of infection in biopsy-derived human intestinal enteroids (HIE) has been described: 3D-HIE are first dispersed in 2D-monolayers and differentiated prior to infection, resulting in a labor-intensive, time-consuming procedure. Here, we present an alternative protocol for HNoV infection of 3D-HIE. We found that 3D-HIE differentiated as efficiently as 2D-monolayers. In addition, immunofluorescence-based quantification of UEA-1, a lectin that stains the villus brush border, revealed that ~80% of differentiated 3D-HIE spontaneously undergo polarity inversion, allowing for viral infection without the need for microinjection. Infection with HNoV GII.4-positive stool samples attained a fold-increase over inoculum of ~2 Log10 at 2 days postinfection or up to 3.5 Log10 when ruxolitinib, a JAK1/2-inhibitor, was added. Treatment of GII.4-infected 3D-HIE with the polymerase inhibitor 2'-C-Methylcytidine (2CMC) and other antivirals showed a reduction in viral infection, suggesting that 3D-HIE are an excellent platform to test anti-infectives. The transcriptional host response to HNoV was then investigated by RNA sequencing in infected versus uninfected 3D-HIE in the presence of ruxolitinib to focus on virus-associated signatures while limiting interferon-stimulated gene signatures. The analysis revealed upregulated hormone and neurotransmitter signal transduction pathways and downregulated glycolysis and hypoxia-response pathways upon HNoV infection. Overall, 3D-HIE have proven to be a highly robust model to study HNoV infection, screen antivirals, and to investigate the host response to HNoV infection. IMPORTANCE The human norovirus (HNoV) clinical and socio-economic impact calls for immediate action in the development of anti-infectives. Physiologically relevant in vitro models are hence needed to study HNoV biology, tropism, and mechanisms of viral-associated disease, and also as a platform to identify antiviral agents. Biopsy-derived human intestinal enteroids are a biomimetic of the intestinal epithelium and were recently described as a model that supports HNoV infection. However, the established protocol is time-consuming and labor-intensive. Therefore, we sought to develop a simplified and robust alternative model of infection in 3D enteroids that undergoes differentiation and spontaneous polarity inversion. Advantages of this model are the shorter experimental time, better infection yield, and spatial integrity of the intestinal epithelium. This model is potentially suitable for the study of other pathogens that infect intestinal cells from the apical surface but also for unraveling the interactions between intestinal epithelium and indigenous bacteria of the human microbiome.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Norovirus/fisiologia , Pirazóis , Antivirais/farmacologia
17.
Reprod Toxicol ; 109: 80-92, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301063

RESUMO

Exposure to trichloroethylene (TCE), an industrial solvent, is associated with several adverse pregnancy outcomes in humans and decreased fetal weight in rats. However, effects of TCE on energy metabolites in amniotic fluid, which have associations with pregnancy outcomes, has not been published previously. In the current exploratory study, timed-pregnant Wistar rats were exposed to 480 mg TCE/kg/day via vanilla wafer or to vehicle (wafer) alone from gestational day (GD) 6-16. Amniotic fluid collected on GD 16 was analyzed for metabolites important in energy metabolism using short chain fatty acid and tricarboxylic acid plus platforms (N = 4 samples/sex/treatment). TCE decreased concentrations of the following metabolites in amniotic fluid for both fetal sexes: 6-phosphogluconate, guanosine diphosphate, adenosine diphosphate, adenosine triphosphate, and flavin adenine dinucleotide. TCE decreased fructose 1,6-bisphosphate and guanosine triphosphate concentrations in amniotic fluid of male but not female fetuses. Moreover, TCE decreased uridine diphosphate-D-glucuronate concentrations, and increased arginine and phosphocreatine concentrations, in amniotic fluid of female fetuses only. No metabolites were increased in amniotic fluid of male fetuses. Pathway analysis suggested that TCE altered folate biosynthesis and pentose phosphate pathway in both sexes. Using metabolite ratios to investigate changes within specific pathways, some ratio alterations, including those in arginine metabolism and phenylalanine metabolism, were detected in females only. Ratio analysis also suggested enzymes, including gluconokinase, as potential TCE targets. Together, results from this exploratory study suggest that TCE differentially modified energy metabolites in amniotic fluid based on sex. These findings may inform future studies of TCE reproductive toxicity.


Assuntos
Tricloroetileno , Líquido Amniótico/metabolismo , Animais , Feminino , Masculino , Gravidez , Resultado da Gravidez , Ratos , Ratos Wistar , Solventes/toxicidade , Tricloroetileno/toxicidade
18.
Epigenetics ; 17(2): 161-177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33588693

RESUMO

Saliva is a widely used biological sample, especially in pediatric research, containing a heterogenous mixture of immune and epithelial cells. Associations of exposure or disease with saliva DNA methylation can be influenced by cell-type proportions. Here, we developed a saliva cell-type DNA methylation reference panel to estimate interindividual cell-type heterogeneity in whole saliva studies. Saliva was collected from 22 children (7-16 years) and sorted into immune and epithelial cells, using size exclusion filtration and magnetic bead sorting. DNA methylation was measured using the Illumina MethylationEPIC BeadChip. We assessed cell-type differences in DNA methylation profiles and tested for enriched biological pathways. Immune and epithelial cells differed at 181,577 (22.8%) DNA methylation sites (t-test p < 6.28 × 10-8). Immune cell hypomethylated sites are mapped to genes enriched for immune pathways (p < 3.2 × 10-5). Epithelial cell hypomethylated sites were enriched for cornification (p = 5.2 × 10-4), a key process for hard palette formation. Saliva immune and epithelial cells have distinct DNA methylation profiles which can drive whole-saliva DNA methylation measures. A primary saliva DNA methylation reference panel, easily implemented with an R package, will allow estimates of cell proportions from whole saliva samples and improve epigenetic epidemiology studies by accounting for measurement heterogeneity by cell-type proportions.


Assuntos
Metilação de DNA , Saliva , Criança , Ilhas de CpG , Estudos Epidemiológicos , Epigênese Genética , Epigenômica , Humanos
19.
Toxicology ; 463: 152964, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600088

RESUMO

Among women, breast cancer is the most prevalent form of cancer worldwide and has the second highest mortality rate of any cancer in the United States. The breast cancer related death rate is 40 % higher in non-Hispanic Black women compared to non-Hispanic White women. The incidence of triple negative breast cancer (TNBC), an aggressive subtype of breast cancer for which there is no targeted therapy, is also approximately three times higher for Black, relative to, White women. The drivers of these differences are poorly understood. Here, we aimed to identify chemical exposures which play a role in breast cancer disparities. Using chemical biomonitoring data from the National Health and Nutrition Examination Survey (NHANES) and biological activity data from the EPA's ToxCast program, we assessed the toxicological profiles of chemicals to which US Black women are disproportionately exposed. We conducted a literature search to identify breast cancer targets in ToxCast to analyze the response of chemicals with exposure disparities in these assays. Forty-three chemical biomarkers are significantly higher in Black women. Investigation of these chemicals in ToxCast resulted in 32,683 assays for analysis, 5172 of which contained nonzero values for the concentration at which the dose-response fitted model reaches the cutoff considered "active". Of these chemicals BPA, PFOS, and thiram are most comprehensively assayed. 2,5-dichlorophenol, 1,4-dichlorobenzene, and methyl and propyl parabens had higher biomarker concentrations in Black women and moderate testing and activity in ToxCast. The distribution of active concentrations for these chemicals in ToxCast assays are comparable to biomarker concentrations in Black women NHANES participants. Through this integrated analysis, we identify that multiple chemicals, including thiram, propylparaben, and p,p' DDE, have disproportionate exposures in Black women and have breast cancer associated biological activity at human exposure relevant doses.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Neoplasias da Mama/epidemiologia , Substâncias Perigosas/toxicidade , Disparidades nos Níveis de Saúde , Biomarcadores/metabolismo , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Inquéritos Nutricionais , Neoplasias de Mama Triplo Negativas/epidemiologia , Estados Unidos/epidemiologia , População Branca/estatística & dados numéricos
20.
Viruses ; 13(6)2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205050

RESUMO

Acute gastroenteritis (AGE) has a significant disease burden on society. Noroviruses, rotaviruses, and astroviruses are important viral causes of AGE but are relatively understudied enteric pathogens. Recent developments in novel biomimetic human models of enteric disease are opening new possibilities for studying human-specific host-microbe interactions. Human intestinal enteroids (HIE), which are epithelium-only intestinal organoids derived from stem cells isolated from human intestinal biopsy tissues, have been successfully used to culture representative norovirus, rotavirus, and astrovirus strains. Previous studies investigated host-virus interactions at the intestinal epithelial interface by individually profiling the epithelial transcriptional response to a member of each virus family by RNA sequencing (RNA-seq). Despite differences in the tissue origin, enteric virus used, and hours post infection at which RNA was collected in each data set, the uniform analysis of publicly available datasets identified a conserved epithelial response to virus infection focused around "type I interferon production" and interferon-stimulated genes. Additionally, transcriptional changes specific to only one or two of the enteric viruses were also identified. This study can guide future explorations into common and unique aspects of the host response to virus infections in the human intestinal epithelium and demonstrates the promise of comparative RNA-seq analysis, even if performed under different experimental conditions, to discover universal and virus-specific genes and pathways responsible for antiviral host defense.


Assuntos
Bases de Dados de Ácidos Nucleicos , Gastroenterite/virologia , Mucosa Intestinal/virologia , Intestinos/citologia , Organoides/citologia , Organoides/virologia , Análise de Sequência de RNA , Linhagem Celular , Humanos , Imunidade Inata , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Intestinos/virologia , Norovirus/genética , Norovirus/imunologia , Rotavirus/genética , Rotavirus/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...